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ABSTRACT
CNN-based object detection architectures have achieved great per-
formances in recent times using SSD, YOLO, and R-CNN. However,
using these algorithms for real-time detection suffer from low FPS
and accuracy. In this paper, we enhanced the conventional SSD as
research has shown that it has higher FPS and accuracy compared
to others making it more suitable for real-time object detection.
However, this conventional SSD suffers computational complexity
and low accuracy for small objects detection. We proposed an en-
hanced SSD for real-time object detection to improve the accuracy
of conventional SSD and reduce its computational complexity with
a higher FPS. Our main contribution is at the level of the multi-scale
object detection, where we implemented PIV layers for enhanced
localization and detection of objects in the feature layers. Further-
more, we introduced extended dilated convolutions with different
dilation operations thereby increasing the receptive field and im-
proved the detection of objects. To demonstrate the effectiveness of
our proposed method, we first carried out experiments on PASCAL
VOC 2007 and PASCAL VOC 2012 and achieved improved perfor-
mances in mAP of 82.0 and mAP of 85.6 on PASCAL VOC 2007
and PASCAL VOC 2012 respectively at 63 FPS, with input size of
300x300 for a batch size of 8. Using the same experimental approach,
we further demonstrated the versatility of the proposed method on
the underwater image dataset where we achieved also improved
performance in mAP of 79.1. Our experimental results have shown
to be an effective alternative for real-time objection detection to
the conventional SSD and other state-of-the-art architectures.
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1 INTRODUCTION
In recent years, Convolutional Neural Networks (CNNs) have
shown great achievements in image processing, natural language
processing, sequences, time series, and prediction. In images pro-
cessing tasks such as object detection, these CNNs are generally
categorized into two; that is region-based proposal networks and
non-region-based proposal networks. Unlike region-based proposal
networks, single-shot multiple detectors (SSD) [1], can be looked as
a deep CNNs based object detector that does not resample features
of pixels for bounding box hypotheses but predicts the boundary
boxes and the classes directly from feature maps in one single pass.
Meanwhile, it also achieves great accuracy without using the ap-
proaches that do resampling. As a result, this conventional SSD
achieves significant improvement in speed and accuracy over other
related architectures [2], like You Only Look Once (YOLOv1) [3]
and Region Convolutional Neural Network (R-CNN) [4]. This is
the motivation for our enhanced SSD proposed in this paper for
real-time object detection.
Conventional SSD fundamentally have two categories of convo-
lutional network, the base and auxiliary or additional networks.
These network categories are the basis for our focus, since the
conventional SSD suffers significantly from low accuracy and com-
putational complexity with relatively low frames per second (FPS)
for small objects detection. We decided to overcome this difficulty
and further enhance the performance of the conventional SSD for
general object detection tasks. We basically implemented an ex-
tended dilated convolution with a dynamic dilated operator and
pure inception variant (PIV) on the conventional SSD architecture.
This generally improves the accuracy of our proposed method with
a higher FPS with the following specifics as our main contributions:
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•Implementing an extended dilated convolution on the base net-
work and auxiliary network increases the receptive field to gain
more semantic data at the level of the feature layers.
•Adding PIV in the auxiliary network reduces complexity and in-
creases the overall speed for real-time object detection.
Our proposed method further describes that in normal dilated con-
volution, the pixel spacing is minus the length of the dilated factor
and it also applies to normal convolution where the dilated rate
is one and there is no pixel spacing in the receptive field during
convolution. The extended dilated convolution on the other hand
uses a caterer of the dilated factor for dilated factors greater than
one to maximize the amount of semantic information received from
the receptive field, and then used with inception in the auxiliary
layers for object detection.
CNN architectures in general have been successful in large-scale
image and video detection [5], which has led to series of break-
throughs in the classification and detection of images [6] [7] [8].
Based on this, we evaluated the strength of our proposed method on
a large collection of public datasets. We first evaluated on renowned
large-scale image repositories, PASCAL VOC-2007 and PASCAL
VOC-2012 [9]. We then further evaluated on amore complex dataset
of underwater images made available by the National Natural Sci-
ence Foundation of China (NSFC) [10]. This evaluation proves the
versatility of our proposed method because underwater images
are mostly characterized by low contrast thus makes its detection
challenging.
The rest of the work is arranged as follows: section two talks about
related works, section three gives a review of dilated convolution
and inception then shows the architecture of our proposed method.
Experimental results are discussed in section four to show what we
achieved, then finally a conclusion in section five that summarized
our research, proposed method and future work.

2 RELATEDWORKS
Early object detection architectures before the establishment of
neural networks were some profound architectures that combined
robust low-level features and compositional models that are elastic
to object deformation such as the Deformable Parts Model (DPM)
[11][12]. This model around the year 2010 represented the state-of-
the-art methods for object detection and later other conventional
methods like Selective Search [13]. However, looking into the speed
and accuracy of these models it is obvious their performance re-
quires some enhancement to be applicable in real-world applica-
tions. DPM may use different compositional templates for different
object classes, which are handcrafted making the model difficult
to generalize. Recent models, such as CNNs and Recurrent Neu-
ral Networks (RNNs), which have not received much attention in
object detection, have been used for solving key computer vision
problems [14]. In the field of object detection, the recent use of
deep neural networks has been demonstrated to perform better
than the traditional methods like DPM and Selective Search. The
recent deep learning attempt for object detection can be divided
into two categories, which are region-proposal based architecture
and regression-based ones.
Region-proposal based architecture includes R-CNN, SPP-net [15],
fast R-CNN [16], faster R-CNN [17], PVANET [18] and R-FCN [19].

These architectures in the first stage generate object boxes and use
a deep neural network for classification and location regression in
the second stage. R-CNN, SPP-net and fast R-CNN use the Selective
Search method to generate region proposals which is the logjam of
the whole algorithm. Later faster R-CNN was introduced to over-
come the logjam and abandon Selective Search architecture but
instead uses Region-proposal Network (RPN) [17] to generate re-
gional proposals. PVANET enhance VGG16 [20] on R-CNNwith the
inception block and the RFN was ranked the first on the VOC2012
dataset of PASCAL Challenge, which was based on R-CNN and
the deep residual network. These architectures cannot be used to
achieve real-time processing because of the low FPS generated by
them even though they have achieved great performance. Other
scholars used conventional machine learning methods to extract
target features such as Haar-like and SIFT in [21], and [22] respec-
tively. Then these extracted features are been used for detection by
classifying them into their different trained categories described
in [23], and [24]. Great improvements have been reached in recent
years, which saw to the improved performance with lesser errors
with the convolutional architectures on like these conventional
algorithms. Furthermore, just by exploiting multiple layers within
a convolutional network, there is a number of ways to improve
its detection performance. One of the ways is to use a combined
feature map, from different layers of the convolutional network to
do prediction. ION in [25] uses L2 normalization [26] for object
proposals from the combination of multiple layers from VGG16 and
its pooling feature. Another method that is similar to this and uses
a combined layer to learn object proposals and to pool features is
Hypernet [27], this is because combined layers have feature maps
from different layers and the pooled feature is more preferred for
localization and classification as it is more descriptive but losses
some salient information during pooling. A different set of methods
predict objects of different scales by using multichannel dilated
convolution [28] to improve the salient information received from
feature layers.
The regression-based architectures on the other hand include YOLO
[29] [3] and Inception SSD [30] that uses only a single network to
generate bounding boxes and classification simultaneously, which
makes it suitable for real-time processing on a high-performance
processor. YOLO generally deals with object detection by using
a smart process of dividing the image into a grid and each mesh
predicts the confidence and the locations of two object boxes, the
performance is limited when there are multiple objects and achieves
high FPS with low accuracy. SSD is generally faster than Faster
RCNN and it associates a set of default boxes with feature maps at
the top of the network, which can identify multiple objects within
the image with various scales and aspect ratio. YOLOv1 and SSD
both suffer from low accuracy in detecting small objects in images. A
multi-scale convolutional neural network (MS-CNN) [31] that helps
to improve accuracy especially in small object detection applies
deconvolution just like SSD on multiple layers of a convolutional
network to increase the feature map resolution. To detect small
objects, MS-CNN needs to use information from shallow layers
with small receptive field and dense feature maps and may cause
low performance.
In comparison with the region-based architectures, the regression-
based architectures achieved higher FPS but the detection accuracy
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Figure 1: (a) Normal Convolution [32]; (b) Dilated Convolution [32]; (c) Extended Dilated Convolution.

is slightly low. To overcome these issues, we proposed an enhanced
SSD method that achieved a relative upsurge in accuracy and speed.

3 METHODOLOGY
We introduced extended dilated convolution on both the base and
auxiliary networks such that we are able to increase the semantic
information in successive feature layers by increasing the receptive
field on different layers during convolution. Then we describe how
they are used with the pure inception blocks to enhanced detection
both on Pascal VOC image datasets, and NSFC underwater image
datasets.

3.1 Dilated Convolution
Dilated convolutions are convolutions that increase receptive fields
on images during convolution by inflating the kernel [32]. Holes are
being added to the kernel determined by an additional parameter
between the kernel elements to increase the pixel spacing in the
feature layers.
An increase in the receptive field on feature layers turn to increase
the amount of semantic information that can be captured during
convolution. But some of the detailed information will be missing
caused by inflation of holes on the kernel, consequently leading to
skipping of some pixels in dilated convolutions. These pixels that
are being skipped carry some detailed information. Our proposed ex-
tended dilated convolution reserves this detailed information from
a pixel that are been skipped during normal dilated convolution
thereby not only increasing the receptive field but also increasing
the semantic information that is been captured. Extended dilation
is an extension of dilated convolution in which the dilated rates
and its subset, for dilated rates greater than one, are used across
convolutional layer blocks to get more semantic information from
the increased receptive field. The receptive field can be seen as the
region in the input space that a given CNN feature is looking at.
Figure 1 shows normal convolution, and dilated convolution and
extended dilated convolution. We used a convolutional kernel of
sizes 3x3 and we illustrate our extended dilation in Figure 1(c).
Using the same dilated rate, a dilated convolution will yield the
same feature layer as an extended dilated convolution consider-
ing the same number of strides in the convolution. Since it has
been established that these dilated convolutions are not contiguous,
there can be seen as discrete function with a discrete filter size
having a discrete filter operator. The dilated operator we used in
our architecture is motivated by [28]:
Let F : Z2 → R be a discrete function. Let Ωr = [−r, r]2 ∩ Z2 and
let k : Ωr → R be a discrete filter of size (2r + 1)2. The discrete

convolution operator ∗ can be defined as:

(F ∗ k) (P) =
∑

s+t=P
F (s)k (t) . (1)

Where F is a discrete function, k the filter, P is the feature map, s
the receptive field and t the padding.
Let’s consider l be a dilation factor then ∗l will be defined as:

(F ∗ l k) (P) =
∑

s+l t=P

F (s)k (t) . (2)

We used a 3x3 convolutional kernel for extended dilation. Consid-
ering this convolutional filter as a k x k filter and a dilated rate l,
the size of the dilated rate kl x kl can be defined as:

kl = k + (k − 1) (l − 1) (3)

Where k is the length or width of the convolutional filter. For
extended dilation with the same parameters as above to get more
information from the pixel spacing caused by dilation, we proposed
a subset of the dilated rate and the size of the dilated rate can be
defined as:

kl =
l∑

l=l−1
1 + l (k − 1) , f or l > 1 (4)

Normal convolution can be seen in equation 1, and equation 2 shows
convolution with a dilated rate l as a mathematical expression
of Figure 1(b). Figure 1(c) shows that the region where semantic
information is more highlighted in localizationmaps as it minimizes
the amount of pixel skipped in dilated convolution. Its mathematical
representation is shown in equation 4.
The convolutional operator itself is been modified to use filter
parameters in diverse ways in our approach across different con-
volutional layers i.e., the dilated convolution operator can apply
the same filter at different ranges using different dilation rates, l
in equations 2 and 4. We demonstrate a proper implementation of
the extended dilated convolution which does not involve creating
dilated filters in each of the layers in our architecture by using the
dilated operator. Usually, the dilated operator is a factor of two but
we extended it by using different dilated rates on the base network
convolutional layers that turn to learn more deep essential features
during convolution.

3.2 Inceptions
Generally deep neural network has a more complex model structure
unlike conventional networks, which when trained with a large
amount of training data yields better performance. The performance
can be improved by increasing network depth and width, however
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Figure 2: Inception Module [13] (a) Inception Module, Naive
Version; (b) Inception Building Block with Dimensionality
Reduction and the 5x5Convolution can Further BeReduced.

an increase in depth of a convolutional network can lead to a delay
in convergence and also takes a long time to train the network.
We introduced PIVs with some residual connections [33] in the
auxiliary convolutional layer for faster convergence. Thus, reducing
the computational complexity of the GPU or CPU, because the
memory will take less time to compute ML operations since the
parameters have been reduced. Then we apply a single shot as a
multi-scale sliding window detector that leverages these auxiliary
convolutional layers for both classification and localization. The
main idea of inception is to use dense components to approximate
the optimal local sparse structure [34].
Elementary foundations of inception [13] enabled us to develop
a pure inception alternate with residual connections used in our
architecture. These elementary pioneers of inception blocks are
shown in Figure 2. A different version of the pure inception blocks
was used with extended dilation. For the residual connection on the
inception blocks, scaling down the residual before adding them to
previous layer activation help in stabilizing training [35].We trained
the pure inception alternate without partitioning the replicas on
the additional convolutional network to deal with the deepness of
our proposed method, this further reduces the problem of computa-
tional complexity as the general number of parameters is reduced.
A higher level of the inception block is shown in Figure 3
On the auxiliary network where the pure inception blocks are added
we used a 3 x3 and 1 x1 convolutional filters without activation
with the extended dilated convolutions as shown in Figure 4. For
a 1-dilated convolution each element has a normal convolutional
receptive field and for a 2-dilated convolution each element has
a receptive field of 7 x 7 and for a 3-dilited convolution each ele-
ment has a receptive field of 11 x 11 thereby causing the number

Figure 3: Pure Inception Alternate.

Figure 4: Pure Inception Blocks Variant Used in the Auxil-
iary Network.

of parameters to grow linearly while the receptive field grows ex-
ponentially giving space for more information to be learned. The
receptive fields are the same for dilated convolution and extended
dilated convolution but extended dilated convolution increase with
essential deep features learned. Different dilation rates are used on
auxiliary blocks 8, 9 and 10 (see Figure 5) with PIVs thereby causing
the inception blocks to get more semantic information without
necessarily increasing computational parameters and complexity.
Ordinarily the auxiliary layers of conventional SSD use only a 3 x
3 filters and performance at these layers can be increased by going
deeper and wider. This can lead the network to take a longer time
to train and increase computational complexity. Inception blocks
can speed up the training process and reduce any computational
complexity. Replacing these filters with inception blocks variant
will turn to increase receptive field features as well, since replac-
ing these convolutional filters with PIV in different convolutional
blocks affect the total number of contiguous feature layers [30]. We
reduced the total amount of feature map to be as same as that of the
conventional SSD when replaced with the PIV. Moreover, they are
used at the top of the convolutional layers for object detection as
Softmax is used for class predictions, and bounding box regression
is used to predict the offsets for some predefined default bounding
boxes from the datasets.

3.3 Combining Extended Dilated Convolution
and the Pure Inception Variants

The base network has five convolutional layers with filters of sizes
3 x 3. We used equation 4 with an extended dilated factor of two for
block1 and block2, and a factor of two and four on block 4 in our
proposed method. The number of channels is the same both for the
input image and the filters. Same as the conventional SSD, we also
used MS-CNN to point out that improving the sub-network of each
layer can better the accuracy in the auxiliary network where convo-
lutional layers are been added with a decrease in size progressively.
Here we introduced extended dilation alongside the PIVs convolu-
tion. Specifically, we replaced the convolutional filters in block 8,
block 10 with each having a dilation rate of 2, 3, 4 and 5 with block
9, and a rate of 2 and 3 with the PIVs. Our experiments show that
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Figure 5: Architecture of Our Proposed Method with Extended Dilated Convolution and PIVs.

we achieved reasonable performance with these PIVs and dilation
rates than other dilation rates. The fourth convolutional block in
the base network is also used for prediction and we experimented
with different extended dilated factors and conclude that dilated
factors of 3 and 4 achieve reasonable performance.
The overall architecture of the proposed method is shown in Figure
5. Blocks 4, 7, 8, 9, 10, and 11 are used for detection with some of
the blocks modified with a set of extended dilated convolution and
inception block. Residual connections with the inception module
lessen the problem of convergence in the deep neural networks
we concatenate the output of block 6 with its input and used it as
the input to block 7. The feature maps of these extra layers will
produce the objects’ location offset and confidence by small con-
volution operations as seen in Figure 3In the final prediction, we
used maximum weighting (NMW) [36] that maximizes object detec-
tion information coming from a bounding box by considering the
non-maximum results unlike conventional SSD that uses maximum
suppression [37]. The NMW is based on a feed forward convolu-
tional network and the final detection is being determined by the
non-maximum suppression by using a confidence threshold of 0.01,
it can filter out most boxes. For the default anchor boxes and aspect
ratios, we associate a set of default bounding boxes with each grid
cell or feature map cell, for multiple feature maps at the top of the
network as [1]. The algorithm of the default boxes and the way they
are been assign to the feature map is in a convolutional manner, so
that their position relative to the feature map is fixed.
We then predicted the offsets relative to the default box shapes
in the cell and in each of those boxes we predicted the per class
scores that indicate the presence of a class instance and the object

localization with the pure inception block at the top of the aux-
iliary network. The pure inception alternates on blocks 8, 9 and
10 are used for detection as shown in Figure 5 allowing different
default box shapes in several feature maps gives us the capacity to
competently discretize the space of possible output box shape.

4 RESEARCH RESULTS
We carried out the evaluation of our experiment on the Pascal VOC
dataset, and the NSFC underwater image dataset to establish and
validate the performance of our proposed method. Similar to the
conventional SSD, we adopted the same training process to establish
the effectiveness of our proposed method and for a fair comparison.
We use a matching phase while training to match the appropriate
default box with the bounding boxes of each ground truth object
within an image to target the ground truth box. The default box
with the highest degree of overlap with an object is responsible for
predicting the object class and its location. For instance, we take
each ground truth box and match it with the best overlapped default
box and consider the ones whose default boxes Jaccard overlap is
larger than a threshold which simplifies the learning problem. Then
for the non-matched default boxes, hard negative mining is been
used on them. That is, certain boxes are been selected to be negative
samples based on the confidence loss so that the ratio with matched
ones is 3:1 [2].
We then calculated and minimized the cost function using adap-
tive moment estimation, the joint localization loss and confidence
loss. The smooth L1 loss [38] between the predicted box and the
ground truth box is used for localization loss which combines the



CSAE 2021, October 19–21, 2021, Sanya, China Divine Achinek et al.

Table 1: PASCAL VOC2007 Test Detection Results Compared with Our Proposed Method. The Input Resolution for Fast and
Faster R-CNN Use Input Images Whose Minimum Dimension Is 600x600. Conventional SSD and Our Proposed Method Use
Input Sizes of 300x300 and 512x512 with the Same Settings.We Trained on VOC2007 Trainval and VOC2012 Trainval, and Used
VOC2007 Test for Testing

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast RCNN
[16]

70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster RCNN
[17]

73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

SSD 300 [1] 74.3 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0
SSD 512 [1] 76.8 82.4 84.7 78.4 73.8 53.2 86.2 87.5 86.0 57.8 83.1 70.2 84.9 85.2 83.9 79.7 50.3 77.9 73.9 82.5 75.3
Our
Method 300

82.0 90.6 85.5 81.4 73.1 59.3 87.1 84.8 90.7 68.3 85.3 77.9 90.6 90.1 87.6 82.2 65.7 77.8 86.5 90.2 85.3

Our
Method 512

85.2 93.8 89.8 88.3 91.1 75.5 91.0 53.5 93.4 73.6 80.0 89.4 98.6 94.8 96.4 86.6 65.8 67.7 89.8 94.6 81.8

Table 2: PASCAL VOC2012 Test Detection Results. The Minimum Dimension of Fast and Faster R-CNN is 600x600 and for
YOLOv1 is 448 x 448. We Trained on VOC2007 Trainval and Test and VOC2012 Trainval and VOC2012 Test for Testing.

Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Fast RCNN
[16]

68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster RCNN
[17]

70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

YOLOv1 [3] 57.9 77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8
SSD 300 [1] 72.4 75.5 80.2 72.3 66.3 47.6 83.0 84.2 86.1 54.7 78.3 73.9 84.5 85.3 82.6 76.2 48.6 73.9 76.0 83.4 74.0
SSD 512 [1] 74.9 87.4 82.3 75.8 59.0 52.6 81.7 81.5 90.0 55.4 79.0 59.8 88.4 84.3 84.7 83.3 50.2 78.0 66.3 86.3 72.0
Our Method
300

85.6 96.4 88.5 84.5 75.2 60.3 90.4 88.1 97.5 70.1 89.3 81.1 96.6 94.2 91.5 85.1 67.4 80.4 91.0 94.9 88.9

Our Method
512

87.3 97.0 92.1 90.7 94.2 80.4 94.1 56.1 98.3 76.3 81.3 89.6 98.6 96.2 97.4 88.5 62.6 71.0 91.2 98.2 89.0

advantages of L1-loss and L2-loss, and softmax loss that is a combi-
nation of softmax loss and cross entropy loss for confidence loss.
We used adaptive moment estimation as our optimizing weight
function with an initial learning rate set to 0.001, momentum set to
0.9, weight decay set to 0.0005, and batch size set to 32. Our based
network is pre-trained on the ILSVRC CLS-LOC dataset [39] [40].
Training also includes data augmentation to make the model more
robust to various input object sizes and shapes. We used batch
normalization for the output of previous layers and input to the
next layer for smooth training to eliminate the internal covariate
shift problem that is to maintain a constant distribution of the
inputs during training as the inputs of different neurons in the
network change. We also used randomization of the original input
image size and random photometric distortion as well as random
flipping of the cropped patch.

4.1 Experimental Results
Our experiments are based on the enhanced VGG backed end and
the auxiliary network, in order to train the new network from pre-
trained data, we had to exclude some layers and later render them
trainable during the training process.

Evaluation Metrics. The commonly used methods to compare detec-
tion and recognition performance in real-time are the mean average
precision (mAP), and FPS. We have used both in our evaluation, the
mAP denotes the average value of all category average precision
(AP), meanwhile the AP over the interval of recall = 0 to 1 computes
the average value of the precision. Where precision and recall are
calculated from the detections true positive (TP), false positive (FP),
and false negative (FN) values as:

AP =
1
∫
0
p (r) dr (5)

Where p and r stand for precision and recall respectively

precision =
TP

TP + FP
, recall =

TP

TP + FN
(6)

The method we used for calculating FPS was the same approach
used in the conventional SSD and other different models which
was setting the batch size to 1 and 8, took the predicted time of all
images used and the sum of the feature extraction time, and divide
it by the total number of the images to calculate the detection time
of a single image.
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Figure 6: Samples of PASCAL VOC Images Showing Detec-
tion of Different Image Categories by Our Method.

4.2 Pascal VOC2007 and 2012
4.2.1 Pascal VOC2007. Since the Pascal VOC dataset is good for
deep learning and other machine learning architectures and was
also used by the conventional SSD, we used it for our training. Pascal
VOC 2007 has 9,963 train, validation and test images containing
24,640 annotated objects and 4952 test images (VOC2007 test) over
20 categories [20]. We used the same approach of fine-tuning on
the pre-trained VGG16 network and using this dataset we compare
the detection results of our proposed methods with state-of-the-art
architectures like SSD, Fast R-CNN [27] and Faster R-CNN [20]
to demonstrate the performance of our proposed method in Table
1We start training our model with 10-3 learning rate for the first
90k iterations and then continue training for 60k iterations with a
learning rate of 10-4 for the first stage then 20k iteration with 10-4,
and another 20k iterations with 10-5 learning rate.
Our proposed method achieved an improved performance over
other state-of-the-art architectures with mAP of 82.0 for 300x300
input size, and mAP of 85.2 for 512x512 input size.

4.2.2 Pascal VOC2012. Pascal VOC 2012 has 11,530 train, validation
and test images containing 27,450 ROI annotated objects and 4952
test images over 20 categories [20] some samples are shown in Fig-
ure 6. We used the same approach of fine-tuning on the pre-trained
VGG16 network and using this dataset we compare detection re-
sults of our proposed method with state-of-the-art architectures
shown in Table 2We start training our model with 10-3 learning
rate for the first 90k iterations and then continue training for 30k
iterations with a learning rate of 10-4 for the first stage. Then we
fine-tune the entire network with a learning rate of 10-3 for the
first 80k iteration and continue training for 20k iteration with 10-4,
and another 20k iteration with 10-5 learning rate.
Our proposed method achieved an improved performance over
other state-of-the-art architectures with mAP of 85.6 for 300x300
input size, and mAP of 87.3 for 512x512 input size.

4.3 NSFC Underwater Image Dataset
The underwater image dataset we used in this experiment was
extracted at our lab from underwater videos provided by the NSFC.
Basically, frames were captured from the underwater video using a
MATLAB code for frame extraction from video. Samples of these
images are shown in Figure 7
There are 18,164 images in total containing four different categories
of seafood that is sea cucumber, sea urchin, scallop and starfish. Our
test set was one-tenth of this dataset. In this experiment we start
training our model with 10-4 learning rate for the first 30k iterations

Figure 7: Samples of the Underwater Image Contained in the
USFCDataset with Our DetectionMethod Showing Four Dif-
ferent Categories of Underwater Seafood [10].

Table 3: Underwater Image Dataset Detection Results Com-
pare to Our Model

Method mAP sea
cucumber

sea
urchin

scallop starfish

Fast RCNN [16] 63.0 70.1 63.2 60.3 58.5
Faster RCNN
[17]

68.4 75.6 68.3 60.9 68.9

SSD 300 [1] 72.8 80.4 70.7 64.9 75.6
SSD 512 [1] 74.6 83.7 72.9 65.3 76.8
Our Method
300

79.1 83.4 77.3 74.5 81.3

Our Method
512

80.6 84.7 79.5 75.3 82.8

and then continue training for 80k iterations with a learning rate
of 10-4 for the first stage. Then we fine-tune the entire network
with a learning rate of 10-3 for the first 20k iteration and continue
training for 20k iteration with 10-4, and another 20k iteration with
10-5 learning rate.
Table 3 shows that we achieved an improved performance over
other state-of-the-art architectures with mAP 79.1 for 300x300 input
size, and mAP of 80.6 for 512x512 input size.

4.4 Inference
We used NMW [36] as mention earlier for inference. It maximizes
object detection information coming from a bounding box with a
Jaccard of 0.45 overlap per class by considering the non-maximum
results using a NVIDIA Tesla T4, cnDNN v 7.0 and CUDA v 9.0.
Real-time performance results are shown in Table 4
Our results show that higher input resolution achieved higher ac-
curacy but with a decrease in FPS.

5 CONCLUSIONS
This paper investigates the strategies to improve the conventional
SSD for real-time object detection. We basically exploited extended
dilated convolution in the base and auxiliary network of our pro-
posed architecture and later introduced inception along with ex-
tended dilated convolution on the auxiliary network. Our proposed
method relatively increased the amount of semantic information
captured and learned during convolution thereby minimizing the
computational complexity. The parameters as inception building
blocks increase the relative speed of the network. We achieved
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Table 4: Result on FPS for Real-Time Detection with Pascal VOC2007 Test

Method Input resolution Batch size Number of boxes mAP FPS

Faster R-CNN [17] ∼1000 x 600 1 ∼ 6000 73.2 7
YOLOv1 [3] 448 x 448 1 98 66.4 22
Fast YOLO [3] 448 x 448 1 98 52.7 155
YOLOv2 [29] 288 x 288 1 1445 69.0 91
YOLOv2 [41] 544x544 1 1445 78.6 40
SSD 300 [1] 300 x 300 1 8732 74.3 48
SSD 300 [1] 300 x 300 8 8732 74.3 60
SSD 512 [1] 512 x 512 1 24564 76.8 20
SSD 512 [1] 512 x 512 8 24564 76.8 23
YOLOv3 (Darknet-53) [41] 320 x 320 1 - 79.2 51
YOLOv3 (Darknet-53) [41] 416 x 416 1 - 82.0 41
YOLOv4 (CSPDarknet-53) [42] 416 x 416 1 - 85.1 44
Our Method 300 300 x 300 1 8732 82.0 49
Our Method 300 300 x 300 8 8732 82.0 63
Our Method 512 512 x 512 1 24564 85.2 30
Our Method 512 512 x 512 8 24564 85.2 34

improved performance over the conventional SSD and other state-
of-the-art architectures. Experimental results show that our pro-
posedmethod yields relatively better performance on PASCAL VOC
2007 and 2012. Besides that, it also achieved improved performance
with the NSFC underwater images dataset, which demonstrates the
versatility of our proposed method.
Future research on this will involve the detection of objects in
video since video object detection is affected by the fuzziness of the
objects in the video that losses focus especially in fast motion and
going deeper with small object detection in videos.
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